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Abstract: 

This study presents a thorough examination of the dynamic response of a micro-elongated 

thermoelastic half-space immersed in an unbounded, non-viscous fluid, with particular attention 

given to the influence of gravity. The investigation is conducted using two distinct thermoelastic 

frameworks: the Lord-Shulman (L-S) model and the Dual-Phase-Lag (DPL) model. The governing 

equations are meticulously derived according to each theoretical model. An analytical solution is 

achieved through the use of the normal mode analysis method. Aluminum epoxy is selected as the 

representative material to demonstrate and compare how gravity affects the interaction between 

the micro-elongated thermoelastic medium and the surrounding fluid. The findings obtained from 

the L-S model are directly compared with those from the DPL model to reveal variations in 

material behavior. The analysis clearly shows that gravity significantly impacts all considered 

physical quantities, including displacement, temperature, micro-elongation, and stress 

components. 

Keywords: thermoelasticity, normal mode, gravity, micro-elongation.  

1. Introduction: 

Generalized thermoelasticity theories were developed to resolve the inconsistency arising from the 

assumption of infinite heat propagation speed inherent in classical coupled thermoelasticity, which 

is based on Fourier’s parabolic heat conduction law as formulated by Biot [1]. To address this, 

Lord and Shulman [2] introduced a generalized thermoelastic model incorporating a single 

relaxation time. Subsequently, Green and Lindsay [3] proposed a version featuring two distinct 

relaxation times. Green and Naghdi [4–6] further advanced the field by formulating three 

additional models—commonly labeled as GN-I, GN-II, and GN-III. Of these, the linearized GN-I 

model aligns with classical thermoelastic theory. In contrast, GN-II assumes zero internal entropy 

production and no thermal energy dissipation, thus supporting the existence of undamped
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 thermoelastic waves within the material. Othman [7] explored the combined impact of laser pulses 

and gravitational fields on thermoelastic media under the Green-Naghdi framework. Later, in 

2012, Othman and Atwa [8] examined the deformation behavior of a micropolar thermoelastic 

solid with voids, considering various surface sources. Tzou [9,10] introduced the Dual-Phase-Lag 

(DPL) model, a novel approach to thermal transport that modifies Fourier's law by introducing two 

distinct time delays—one for heat flux and another for temperature gradient. Using the DPL model, 

Othman and Eraki [11] investigated the influence of gravity on thermoelastic diffusion triggered 

by laser pulses. The concept that solid materials can undergo both macro-deformations and micro-

rotations was introduced by Eringen [12–14] through his linear theory of micropolar elasticity, 

which he later extended to thermo-microstretch elastic solids [15]. 

In micro-elongated elastic solids, four degrees of freedom exist: three for translational 

motion and one for micro-elongation. Beyond classical deformation, these materials allow for 

volumetric micro-elongation, where material particles can expand or contract independently of 

their translational motion. Examples of such media include solid-liquid crystals, composites 

reinforced with chopped elastic fibers, and porous materials saturated with inviscid fluids or gases. 

Shaw and Mukhopadhyay [16] analyzed the thermal response of a functionally graded, isotropic, 

unbounded micro-elongated medium under a periodically varying heat source. In another study 

[17], they examined thermoelastic interactions in a homogeneous, isotropic micro-elongated 

medium influenced by a moving heat source. Ailawalia and Sachdeva [18] investigated 

deformation caused by internal heat sources in a thermoelastic micro-elongated solid covered by 

an elastic layer of thickness hhh. Further, Sachdeva [19] studied two-dimensional deformation in 

such a medium interacting with a fluid layer. Ailawalia and Pathania [20] explored the effects of 

internal heat sources in a micro-elongated thermoelastic solid topped by an infinite elastic layer. 

Othman [21] employed the DPL model to assess the combined effects of gravitational fields and 

rotation on a generalized thermoelastic medium, while Ahmed [22] analyzed the influence of 

gravity on piezo-thermoelastic behavior within the DPL framework. 

In the current study, we focus on examining the thermoelastic behavior of a micro-elongated half-

space embedded in an infinitely extended, inviscid (non-viscous) fluid medium, while accounting 

for the effects of gravity, as schematically depicted in Fig. 1. The investigation is carried out using 

two primary theoretical frameworks: the Dual-Phase-Lag (DPL) model and the Lord–Shulman (L-
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S) theory. The study begins with the systematic derivation and formulation of the governing 

equations that describe the physical behavior of the system under the specified conditions. To 

streamline the mathematical complexity and ensure dimensional consistency, a non-

dimensionalization process is implemented, transforming the governing equations into a 

dimensionless form. This approach not only enhances the generality of the results but also 

simplifies the computational process. For analytical tractability, the normal mode analysis method 

is employed, which converts the system of partial differential equations (PDEs) into a set of 

ordinary differential equations (ODEs), making the problem more manageable within the given 

geometrical setup. Appropriate boundary conditions are then defined and imposed at the interface 

between the solid and fluid media. These conditions are crucial for determining the constants of 

integration that appear in the general solutions of the differential equations. By applying the 

boundary conditions rigorously, a complete and physically consistent solution is obtained. Finally, 

the theoretical outcomes are validated through numerical simulations. Detailed numerical 

calculations are performed to explore the physical consequences of incorporating gravity into the 

models. The resulting data are thoroughly analyzed, discussed, and presented through graphical 

illustrations to clearly demonstrate the impact of gravity on the various thermoelastic and 

microstructural fields within the medium. 

2.  Basic equations 

The system of governing equations of a micro-elongated thermoelasticity with gravity in a dual-

phase-lag model can be written as [18] 

, , ,ij j i ttu                                                                                                                                     (1) 

0 , 1 1 0 , 0 ,

1
,

2
ii j j tta T u j                                                                                                    (2) 

, 0 , 1 0 ,(1 ) (1 ) ( ) ,ii q e k kt t

T
k T c T u T

t t t
     
  

    
  

                                                              (3) 

0 02 ( ) .ij ij ije T                                                                                                             (4) 

From equation (1) and equation (4) for displacement vector 1 3( , , ) ( ,0, )x z t u u uu and the gravity   

g  the equations of motion are given by [21-22] 
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2 3
1 , 0 , 0 , 1,( ) ,x x x tt

u
u e T g u

x
       


      


                                                                         (5) 

2 1
3 , 0 , 0 , 3,( ) .z z z tt

u
u e T g u

x
       


      


                                                                     (6) 

For simplicity, the following non-dimensional variables are used 
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Where,                
2

1 ,ec c
w

k

     2

1

2
.c

 




  

Substituting from Eqs. (7) into Eqs. (2), (3), (5), and (6), we obtain 

2

1 1 2 , , , 3, 1, ,x x x x tta u a e T g u u                                                                                                      (8) 

2

1 3 2 , , , 1, 3, ,z z z x tta u a e T g u u                                                                                                     (9) 

2

4 3 5 6 ,( ) ,tta a T a e a                                                                                                                  (10) 

2

7 , 8 , 9 ,(1 ) (1 )[ ] .q t t tT a T a e a
t t

  
 

     
 

                                                                           (11) 

3. Normal mode analysis 

 The solution of the physical variable recognized may be analysed in normal modes as the 

following form: 

* * * * * * ( )[ , , , , , ]( , , ) [ , , , , , ]( ) .e e e e wt ib x

i ij i ij i ij i iju T u x z t u T u z e                                                        (12) 

Where w  is a complex constant, 1i   , b  is wave number in the x direction. 

Using Eq. (12) into Eqs. (8)-(11), then we have  

2 * * * *

1 1 1 2 3[ D ] [ D + ] 0,a u ib g u ibT ib                                                                             (13)                                                            

* 2 * * *

2 1 3 4 3[ D ] [ D ] D D 0,i b g u u T                                                                                   (14) 

* * * 2 *

5 1 5 3 3 6D [ D ] 0,u a u a T                                                                                            (15) 

* * 2 * *

9 1 10 3 7 11 12D [ D ] 0.u u T                                                                                         (16) 

Eqs. (13)-(16) have a non-trivial solution if the physical quantities' determinant coefficients equal 

to zero, then we get. 
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8 6 4 2 * * * *

1 3( D D D D ){ ( ) , ( ) , ( ) , ( ) } 0.A B C E u z u z T z z                                        (17)  

Eq. (18) can be factorized as: 

2 2 2 2 2 2 2 2 * * * *

1 2 3 4 1 3( D ) ( D )( D )( D ){ ( ) , ( ) , ( ) , ( ) } 0.k k k k u z u z T z z                                     (18) 

Where, 
2 ,( 1,2,3,4)nk n   are roots of the characteristic equation of (18)  

The general solutions of Eq. (18) bound as ( )z  is given by  

4 4
* * * *

1 3 1 2 3 1( 4) 2( 4) 3( 4) ( 4)

1 1

( , , , ) ( ) (1, , , ) (1, , , ) .n nk z k z

n n n n n n n n

n n

u u T z H H H M e H H H M e 

   

 

      (19)                                                            

Substituting from Eq. (7) into (4), and with the help of Eq. (19), we obtain the components of 

stresses. 

4 4
( ) ( )

4 5 4( 4) 5( 4) 4

1 1

( , ) ( ) ( , ) ( , ) .n nk z wt ibx k z wt ibx

xx zz n n n n n n

n n

z H H M e H H M e      

  

 

        (20)                                                           

4 4
( ) ( )

6 6( 4) 4

1 1

( ) n nk z wt ibx k z wt ibx

xz n n n n

n n

z H M e H M e     

 

 

                       (21)                                                                         

Where the coefficient ia , i , , , ,A B C E , inH  and ( 4)i nH   are given in Appendix 1. 

The basic equation in the fluid is given by Othman and Ismail [23]  

,( . ) ,f f f f
tt   u u

        (22) 

, .f f f
ij r r iju  

                        (23) 

Substituting from Eq. (12) into Eq. (22) 

2
2 * *

1 32
1

( ) D 0,
( )

f f

f

w
b u i b u

c
     (24) 

2
2 * *

3 12
1

( D ) D 0.
( )

f f

f

w
u i b u

c
     (25) 

Where, 
2

1 .
f

f

f
c




  

Eliminating  
* *
1 3,f fu u  between Eqs. (24)  and (25), we obtain 

2 2 * *
1 3[ D ] ( , ) 0.f fr u u    (26) 
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The root of the auxiliary equation of Eq. (26) is 
2

2 2

2
1

( ),
( )f

w
r b

c
    and the solution of Eq. (26) 

has the form 

1 3 11 1 12 2( , ) ( ) (1, ) (1, ) .f f r z r zu u z L R e L R e  
                                      (27) 

Substituting from Eq. (12) in Eq. (23) and by using Eq. (27), we acquire the stress components in 

a fluid layer. 

* * *
21 1 22 2( ) ( ) ( ) .f f f r z r z

xx yy zzz z z L R e L R e          (28)                                                      

Where,
11 2

2

2
1

,

[ ]
( )f

i b r
L

w
r

c






12 2
2

2
1

,

[ ]
( )f

i b r
L

w
r

c





21 11[ ],fL ib rL  22 12[ ].fL ib rL   

4. Boundary conditions 

To find the constants 4 1, ,n nM M R  and 2 ,R  we have applied boundary conditions for this problem 

at ,z d   

,f
xx xx       

( )
1 ,i b x t

xz f e          1 1 ,
fuu

z z




 
        0,          

( )
2 .i b x tT f e           at z d   (29) 

Using the expressions for 1 1, , , , , ,f f
xx xz xxu u      and T  in (29), we get  

4 4

4 4( 4) 4 22 2
1 1

0,n nk d k d r d
n n n n

n n

H M e H M e L R e
 

 
 

       

4 4
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n n n n
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 
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 
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4 4
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1 1
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n n
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 
 
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4 4

6 6( 4) 4 1
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n n n n

n n

H M e H M e f


 
 

    

4 4
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1 1

0,n nk d k d r d
n n n n

n n

k M e k M e r R e
 


 

     

4 4

4 1
1 1

0,n nk d k d r d
n n n n

n n

k M e k M e r R e
 


 
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4 4

3 3( 4) 4
1 1

0,n nk d k d
n n n n

n n

H M e H M e


 
 

    

4 4

3 3( 4) 4
1 1

0,n nk d k d
n n n n

n n

H M e H M e


 
 

    

4 4

2 2( 4) 4 2
1 1

,n nk d k d
n n n n

n n

H M e H M e f


 
 

    

4 4

2 2( 4) 4 2
1 1

,n nk d k d
n n n n

n n

H M e H M e f


 
 

    (30) 

By solving the system of non-homogeneous equations (30), the constants ,nM  4 ,nM  1R  and 2 ,R  

can be obtained, then, we define the distribution of all the field quantities. 

5. Numerical results and discussion 

 The analysis is conducted for aluminum epoxy-like material as [24]: 

5 2

0 1 0,05 10 .N m k    ,  966 .ec J kg k  , 252 . .k J m s k , 
4 2

0 0.196 10j m  , 

10 27.59 10 N m   , 
10 21.89 10 N m   , 

10

0 0.61 10a N  , 
3 32.19 10 kg m   , 

10 2

0 1 0.37 10 N m    ,  0 293T k , 0.001P ,  
41.5 10
  ,          

49 10q
  ,       0w w i 

, 
4

0 1.77 10w   ,
33.59 10   ,  3b  ,  

1 0.025,f    
2 0.025f   

As a non-viscous fluid, water has the physical constants are given by Othman and Ismail [23] 

 
9 22.25 10 N.m ,f    

3 310 kg.m .f           

In this paper, the calculations are carried out to a value dimensionless time 1.02t  in the range 

2 2z    on the surface 0.5x  . The numerical strategy stated herein is used to distribute 

horizontal displacement 1u ,  vertical displacement 3u , temperature T  , micro-elongational scalar 

 ,stresses components ,xx zz  , and xz  against distance z . To study the effect of the presence 

and complete absence of gravity in the DPL model and L-S. This paper introduces the results of 

the numerical assessment in the form of a graph. Fig. 2 presents the variation of the horizontal 

displacement 1u   as a function of the spatial or temporal variable, comparing two different cases: 

the presence and the complete absence of gravity. It is evident that gravity has a notable impact on 

the displacement distribution, leading to either an increase or decrease in displacement depending 

on the spatial region. The displacement curve under the influence of gravity typically shows 
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steeper gradients and larger amplitudes, highlighting gravity’s role in altering wave propagation 

behavior and influencing the deformation characteristics of the material. Fig. 3 illustrates the 

variation of the vertical displacement 3u   under two scenarios: with and without gravity. The 

curves show that gravity affects the magnitude and distribution of vertical displacement through 

the material. In areas characterized by strong mechanical or thermal gradients, gravity tends to 

either amplify or diminish the displacement relative to the case without gravitational influence. 

This behavior underscores the anisotropic nature induced by gravity, which affects the vertical 

movement of material particles during thermoelastic interactions. Fig. 4 the temperature 

distribution T  is plotted for both the presence and absence of gravity. The curves reveal that the 

gravity not only affects the mechanical response but also has a noticeable impact on thermal fields. 

Specifically, temperature diffusion and the resulting thermal gradients are altered in the stressed 

material. The figure indicates that gravity may either hasten or slow down the thermal response, 

depending on whether it acts in a compressive or tensile manner, thereby affecting the heat 

conduction process within the thermoelastic medium. Fig. 5 shows the variation of the micro-

elongational scalar    with and without gravity. The micro-elongation, which represents internal 

structural deformations at the micro-scale, is significantly influenced by the pre-existing stress 

state. In the stressed case,    shows distinct peaks or troughs, indicating enhanced microstructural 

activity. The comparison suggests that gravity plays a crucial role in micro-mechanical processes 

and might lead to more complex internal deformation patterns within the material. Fig. 6 shows  

the force stress component xx   (normal stress in the x-direction) is plotted for both cases. It is 

clear from the figure that gravity affects the stress distribution within the material. The stressed 

configuration exhibits higher peak values and sharper transitions in the stress field compared to 

the unstressed case. These observations underline how gravity modifies internal forces, potentially 

leading to different failure modes or stability conditions in thermoelastic bodies. Fig. 7 depicts the 

variation of the force stress component zz  (normal stress in the z-direction). Similar to the 

horizontal stress component, the vertical stress shows distinct differences between the stressed and 

unstressed states. In the presence of gravity, the material experiences either elevated or reduced 

stress concentrations depending on the location. The behavior of zz  reflects how the initial 

conditions influence vertical load-bearing capacity and mechanical equilibrium. figure, the 

variation of the force stress component xz   (shear stress component) is presented. The curves 
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reveal that gravity has a pronounced effect on the distribution of shear stress. The locations of 

stress concentration or relief vary notably between scenarios with and without gravity, reflecting 

the intricate interaction between gravitational forces and thermoelastic shear behavior. The shear 

stress component shows heightened sensitivity to gravity, emphasizing its influence on the 

development of shear instabilities or the formation of potential slip zones within the material. 

 

 

Fig. 1 Geometry of the problem  

 

in the presence and complete absence of  1uFig. 2 Variation of the horizontal displacement 

gravity. 
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Fig. 3 variation of the vertical displacement 3u  in the presence and complete absence of gravity. 

 

 

. gravityin the presence and complete absence of  TFig. 4 variation of the temperature  
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Fig. 5 Variation of the micro-elongational scalar   in the presence and complete absence of 

gravity. 

 

Fig. 6 Variation of the force stress components xx  in the presence and complete absence of 

gravity. 
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Fig. 7 Variation of the force stress components zz  in the presence and complete absence of 

gravity. 

 

Fig. 8 Variation of the force stress components xz  in the presence and complete absence of 

gravity. 

 

 

 

 

 



                                             
                                                                                                  

13 
 

6. Conclusion 

This work presents a detailed analytical study exploring the impact of gravity on a micro-elongated 

thermoelastic half-space immersed in an infinitely extending inviscid fluid, using both the Dual-

DPL model and L-S theory. The investigation begins with the derivation of the governing 

equations, which are then non-dimensionalized and simplified using normal mode analysis. This 

approach transforms the original system of partial differential equations into a more tractable set 

of ordinary differential equations. Gravity is explicitly incorporated into the formulation, and 

appropriate boundary conditions are applied at the interface to determine the integration constants. 

Numerical simulations are carried out to illustrate and compare the behavior of key physical 

quantities—such as displacement, temperature, and stress—both with and without the influence of 

gravity. The findings highlight that gravity significantly affects the thermoelastic and 

microstructural behavior of the medium. Under both the DPL and L-S frameworks, gravity 

modifies the amplitude, phase, and propagation characteristics of thermal and mechanical waves. 

Additionally, comparisons between the two models show that the DPL theory, which accounts for 

phase-lag effects, offers a more refined representation of the system, particularly in capturing the 

finite speed of thermal signals and the delayed interactions between thermal and mechanical fields. 

 

List of symbols 

  Density in micro-elongated medium  

ij  Component of stress tensor for micro-elongated medium 

u    Displacement vector in micro-elongated medium   

0 0 1, ,a  
 
Micro-elongational constants 

g  gravity  

0j  Microinertia 

1 2
,t t   Coefficient of linear thermal expansion where 

10 (3 2 ) t    ,
21 (3 2 ) t     

  Micro-elongational scalar 

0T  Reference temperature  

T  Absolute temperature 

ec   Specific heat at the constant strain in micro-elongated medium 
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k  Thermal conductivity in micro-elongated medium 

  Temperature gradient parameter 

q  Heat flux parameter 

,   Lame's constants in micro-elongated medium  

f          Bulk modulus 

f
u          Displacement vector for fluid 

f
ij          Component of stress tensor of fluid 

f          Density of fluid 

1

fc           Velocity of sound of fluid 
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